
To Infinity and Beyond: SHOW-1 and Showrunner Agents in Multi-Agent Simulations
Date : 2023-07-24
Abstract
In this work we present our approach to generating high-quality episodic content for IP's (Intellectual Property) using large language models (LLMs), custom state-of-the art diffusion models and our multi-agent simulation for contextualization, story progression and behavioral control. Powerful LLMs such as GPT-4 were trained on a large corpus of TV show data which lets us believe that with the right guidance users will be able to rewrite entire seasons.
See project page below
Recently on :
Artificial Intelligence
Research
Design | Culture
WEB - 2025-11-13
Measuring political bias in Claude
Anthropic gives insights into their evaluation methods to measure political bias in models.
WEB - 2025-10-09
Defining and evaluating political bias in LLMs
OpenAI created a political bias evaluation that mirrors real-world usage to stress-test their models’ ability to remain objecti...
WEB - 2025-07-23
Preventing Woke AI In Federal Government
Citing concerns that ideological agendas like Diversity, Equity, and Inclusion (DEI) are compromising accuracy, this executive ...
WEB - 2025-07-10
America’s AI Action Plan
To win the global race for technological dominance, the US outlined a bold national strategy for unleashing innovation, buildin...
WEB - 2024-12-30
Fine-tune ModernBERT for text classification using synthetic data
David Berenstein explains how to finetune a ModernBERT model for text classification on a synthetic dataset generated from argi...